Neural Networks

Lecture 2 Two simple learning algorithms

Supervised Learning

- Each training case consists of an input vector x and a desired output y (there may be multiple desired outputs but we will ignore that for now)
 - Regression: Desired output is a real number
 - Classification: Desired output is a class label (1 or 0 is the simplest case).
- We start by choosing a model-class
 - A model-class is a way of using some numerical parameters, W, to map each input vector, x, into a predicted output y
- Learning usually means adjusting the parameters to reduce the discrepancy between the desired output on each training case and the actual output produced by the model.

Linear neurons

 The neuron has a realvalued output which is a weighted sum of its inputs

weight

vector

 $\hat{y} = \sum_{i} w_{i} x_{i} = \mathbf{w}^{T} \mathbf{x}$

Neuron's estimate of the desired output

- The aim of learning is to minimize the discrepancy between the desired output and the actual output
 - How de we measure the discrepancies?
 - Do we update the weights after every training case?
 - Why don't we solve it analytically?

A motivating example

- Each day you get lunch at the cafeteria.
 - Your diet consists of fish, chips, and beer.
 - You get several portions of each
- The cashier only tells you the total price of the meal
 - After several days, you should be able to figure out the price of each portion.
- Each meal price gives a linear constraint on the prices of the portions:

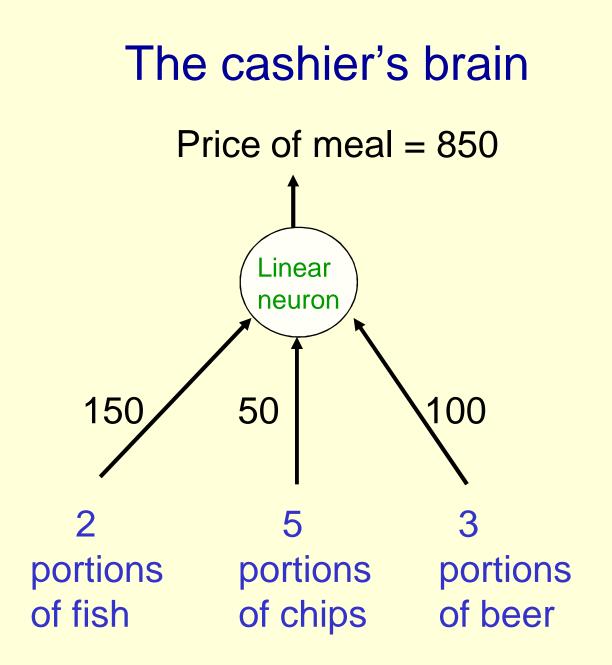
 $price = x_{fish}w_{fish} + x_{chips}w_{chips} + x_{beer}w_{beer}$

Two ways to solve the equations

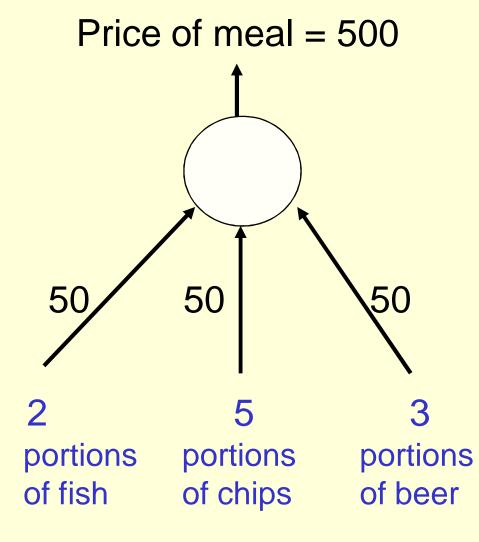
- The obvious approach is just to solve a set of simultaneous linear equations, one per meal.
- But we want a method that could be implemented in a neural network.
- The prices of the portions are like the weights in of a linear neuron.

$$\mathbf{w} = (w_{fish}, w_{chips}, w_{beer})$$

 We will start with guesses for the weights and then adjust the guesses to give a better fit to the prices given by the cashier.



A model of the cashier's brain with arbitrary initial weights



- Residual error = 350
- The learning rule is:

 $\Delta w_i = \varepsilon \ x_i \left(y - \hat{y} \right)$

- With a learning rate *E* of 1/35, the weight changes are +20, +50, +30
- This gives new weights of 70, 100, 80
- Notice that the weight for chips got worse!

Behaviour of the iterative learning procedure

- Do the updates to the weights always make them get closer to their correct values? No!
- Does the online version of the learning procedure eventually get the right answer? Yes, if the learning rate gradually decreases in the appropriate way.
- How quickly do the weights converge to their correct values? It can be very slow if two input dimensions are highly correlated (e.g. ketchup and chips).
- Can the iterative procedure be generalized to much more complicated, multi-layer, non-linear nets? YES!

Deriving the delta rule

Define the error as the squared $E = \sum \frac{1}{2} (y_n - \hat{y}_n)^2$ • residuals summed over all training cases:

Now differentiate to get error lacksquarederivatives for weights

The batch delta rule changes • the weights in proportion to their error derivatives summed over all training cases

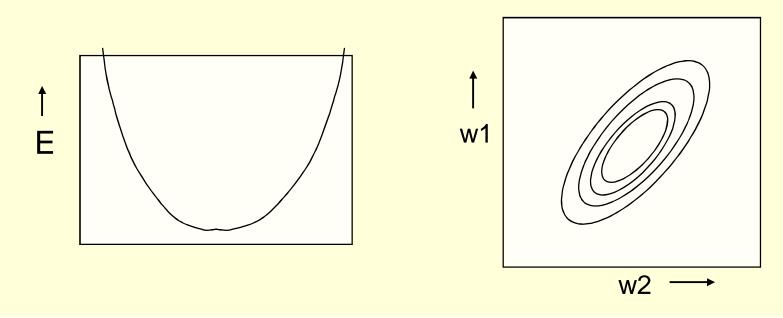
$$\frac{\partial E}{\partial w_i} = \sum_n \frac{\partial \hat{y}_n}{\partial w_i} \frac{\partial E_n}{\partial \hat{y}_n}$$
$$= -\sum_n x_{i,n} (y_n - \hat{y}_n)$$

n

$$\Delta w_i = -\varepsilon \frac{\partial E}{\partial w_i}$$

The error surface

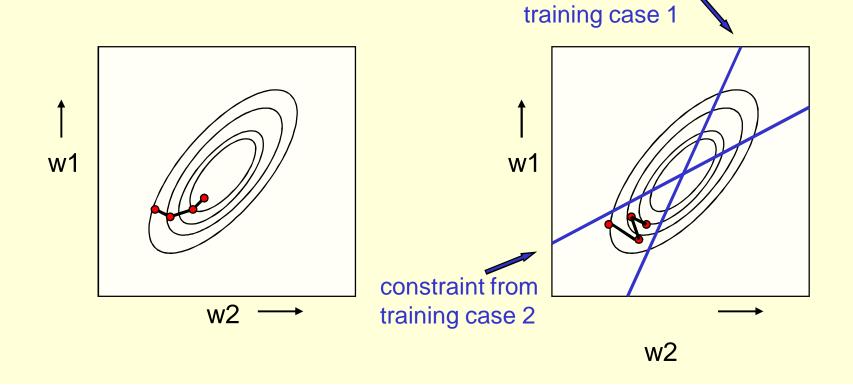
- The error surface lies in a space with a horizontal axis for each weight and one vertical axis for the error.
 - For a linear neuron, it is a quadratic bowl.
 - Vertical cross-sections are parabolas.
 - Horizontal cross-sections are ellipses.



Online versus batch learning

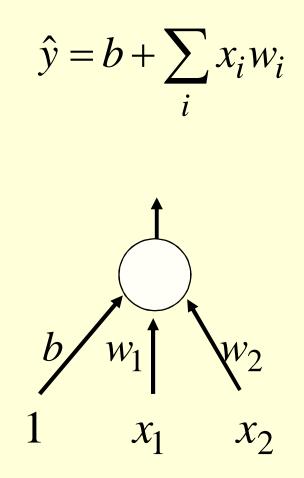
- Batch learning does steepest descent on the error surface
- Online learning zig-zags around the direction of steepest descent

constraint from



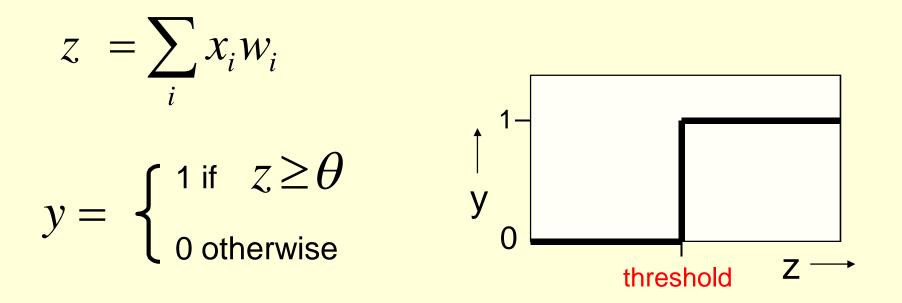
Adding biases

- A linear neuron is a more flexible model if we include a bias.
- We can avoid having to figure out a separate learning rule for the bias by using a trick:
 - A bias is exactly equivalent to a weight on an extra input line that always has an activity of 1.



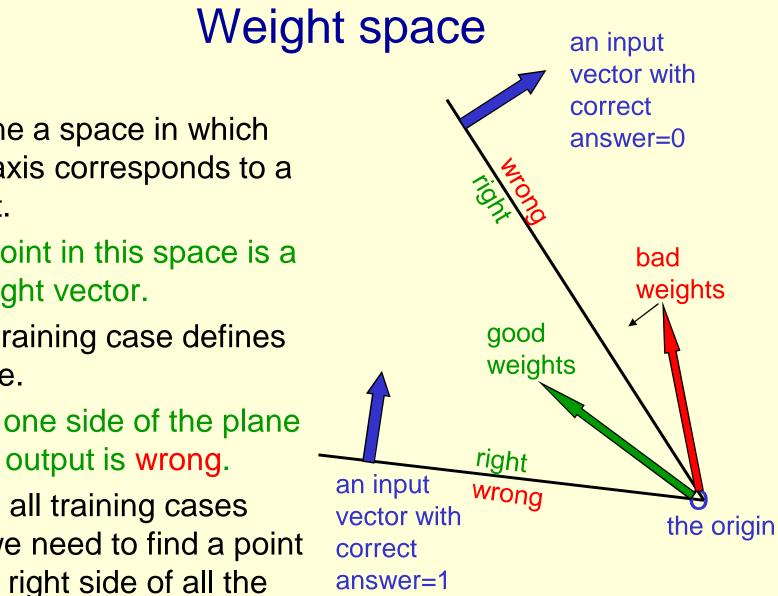
Binary threshold neurons

- McCulloch-Pitts (1943)
 - First compute a weighted sum of the inputs from other neurons
 - Then output a 1 if the weighted sum exceeds the threshold.



The perceptron convergence procedure: Training binary output neurons as classifiers

- Add an extra component with value 1 to each input vector. The "bias" weight on this component is minus the threshold. Now we can forget the threshold.
- Pick training cases using any policy that ensures that every training case will keep getting picked
 - If the output unit is correct, leave its weights alone.
 - If the output unit incorrectly outputs a zero, add the input vector to the weight vector.
 - If the output unit incorrectly outputs a 1, subtract the input vector from the weight vector.
- This is guaranteed to find a suitable set of weights if any such set exists.



- Imagine a space in which each axis corresponds to a weight.
 - A point in this space is a weight vector.
- Each training case defines a plane.
 - On one side of the plane the output is wrong.
- To get all training cases right we need to find a point on the right side of all the planes.

Why the learning procedure works

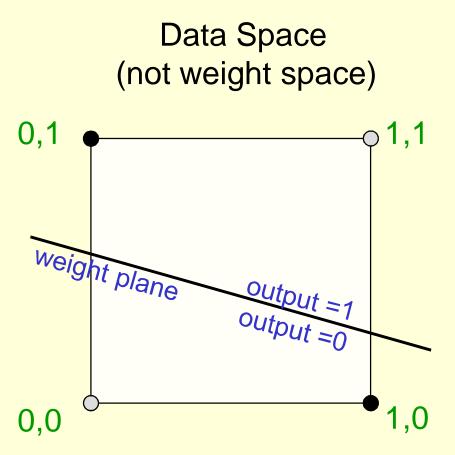
- Consider the squared distance between any satisfactory weight vector and the current weight vector.
 - Every time the perceptron makes a mistake, the learning algorithm moves the current weight vector towards all satisfactory weight vectors (unless it crosses the constraint plane).
- So consider "generously satisfactory" weight vectors that lie within the feasible cone by a margin at least as great as the largest update.
 - Every time the perceptron makes a mistake, the squared distance to all of these weight vectors is always decreased by at least the squared length of the smallest update vector.

hargin

What binary threshold neurons cannot do

- A binary threshold output unit cannot even tell if two single bit numbers are the same!
 Same: (1,1) → 1; (0,0) → 1
 Different: (1,0) → 0; (0,1) → 0
- The four input-output pairs give four inequalities that are impossible to satisfy:

$$w_1 + w_2 \ge \theta, \quad 0 \ge \theta$$
$$w_1 < \theta, \qquad w_2 < \theta$$



The positive and negative cases cannot be separated by a plane

Scope of Research

• Effective Distance Generation Algorithms for Supervised Learning